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Space-Time Compactification, Non-Singular Black
Holes, Wormholes and Braneworlds via Lightlike

Branes∗

Eduardo Guendelman and Alexander Kaganovich†

Physics Department, Ben Gurion University of the Negev
Beer Sheva, ISRAEL

Emil Nissimov and Svetlana Pacheva‡
Institute for Nuclear Research and Nuclear Energy
Bulgarian Academy of Sciences, Sofia, BULGARIA

Abstract

We describe a concise general scheme for constructing solutions of
Einstein-Maxwell-Kalb-Ramond gravity-matter system in bulk space-
time interacting self-consistently with one or more (widely separated)
codimension-one electrically charged lightlike branes. The lightlike
brane dynamics is explicitly given by manifestly reparametrization
invariant world-volume actions. We present several explicit classes
of solutions with different physical interpretation as wormhole-like
space-times with one, two or more “throats”, singularity-free black
holes, brane worlds and space-times undergoing a sequence of spon-
taneous compactification-decompactification transitions.

1. Introduction

Lightlike branes (LL-branes for short) are singular null (lightlike) hyper-
surfaces in Riemannian space-time which provide dynamical description
of various physically important phenomena in cosmology and astrophysics
such as: (i) impulsive lightlike signals arising in cataclysmic astrophysical
events (supernovae, neutron star collisions) [1]; (ii) dynamics of horizons
in black hole physics – the so called “membrane paradigm” [2]; (iii) the
thin-wall approach to domain walls coupled to gravity [3, 4, 5].

∗Work supported in part by Bulgarian National Science Foundation grant DO 02-257.
E. N. is partially supported by ICTP–SEENET-MTP project PRJ-09 “Cosmology and
Strings ”, Nis, Serbia.
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‡ e-mail address: nissimov@inrne.bas.bg, svetlana@inrne.bas.bg
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More recently, the relevance of LL-branes in the context of non-perturbative
string theory has also been recognized [6].
Starting with the pioneering papers [3, 4, 5] the LL-branes have been ex-
clusively treated in a “phenomenological” manner, i.e., without specifying
an underlying Lagrangian dynamics from which they may originate. On
the other hand, in the last few years we have proposed in a series of papers
[7, 8, 9, 10] a new class of concise manifestly reparametrization invariant
world-volume Lagrangian actions, providing a derivation from first prin-
ciples of the LL-brane dynamics. The following characteristic features of
the new LL-branes drastically distinguish them from ordinary Nambu-Goto
branes:
(a) They describe intrinsically lightlike modes, whereas Nambu-Goto bra-

nes describe massive ones.
(b) The tension of the LL-brane arises as an additional degree of free-

dom, whereas Nambu-Goto brane tension is a given ad hoc constant.
The latter characteristic feature significantly distinguishes our LL-
brane models from the previously proposed tensionless p-branes (for
a review, see Ref.[11]). The latter rather resemble p-dimensional con-
tinuous distributions of independent massless point-particles without
cohesion among the latter.

(c) Consistency of LL-brane dynamics in a spherically or axially symmet-
ric gravitational background of codimension one requires the presence
of an event horizon which is automatically occupied by the LL-brane
(“horizon straddling” according to the terminology of Ref.[4]).

(d) When the LL-brane moves as a test brane in spherically or axially
symmetric gravitational backgrounds its dynamical tension exhibits
exponential “inflation/deflation” time behavior [8] – an effect similar
to the “mass inflation” effect around black hole horizons [12].

An intriguing novel application of LL-branes as natural self-consistent grav-
itational sources for wormhole space-times has been developed in a series of
recent papers [9, 10, 13, 14]. In what follows, when discussing wormholes
we will have in mind precisely this physically important class of “thin-shell”
traversable Lorentzian wormholes first introduced by Visser [15, 16]. For a
comprehensive general review of wormhole space-times, we refer to [16, 17].
In the present work we describe a concise systematic scheme for construct-
ing solutions of Einstein-Maxwell-Kalb-Ramond gravity-matter system in
bulk space-time coupled self-consistently to one or more (widely separated)
codimension-one electrically charged LL-branes. The solutions describe
bulk space-time manifolds consisting of several space-time regions (“uni-
verses”) with different (in general) geometries such that: (i) each separate
“universe” is a “vacuum” solution of Einstein-Maxwell-Kalb-Ramond equa-
tions (i.e., without the presence of LL-branes); (ii) the separate “universes”
are pairwise matched (glued together) along some of their common horizons;
(iii) each of these common matching horizons is automatically occupied by
one LL-brane (“horizon straddling”) which generates space-time varying
cosmological constants in the various matching “universes”.
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We present several explicit types of solutions with different physical inter-
pretation such as: (a) wormhole-like space-times with one, two or more
“throats”; (b) non-singular black holes; (c) brane worlds; (d) space-times
undergoing a sequence of spontaneous compactification/decompactification
transitions triggered by LL-branes.

2. Lagrangian Formulation of Lightlike Brane Dynamics

In a series of previous papers [7, 8, 9, 10, 13, 18] we have proposed mani-
festly reparametrization invariant world-volume Lagrangian formulation of
LL-branes in several dynamically equivalent forms. Here we will use the
Nambu-Goto-type formulation given by the world-volume action:

SLL = −
∫

dp+1σ T

√∣∣∣∣ det ‖gab − ε
1
T 2

∂au∂bu‖
∣∣∣∣ , ε = ±1 . (1)

Here and below the following notations are used:
• gab is the induced metric on the world-volume:

gab ≡ ∂aX
µ∂bX

νGµν(X) , (2)

which becomes singular on-shell (manifestation of the lightlike nature,
cf. Eq.(6) below).

• Xµ(σ) are the p-brane embedding coordinates in the bulk D-dimensio-
nal space-time with Riemannian metric Gµν(X) (µ, ν = 0, 1, . . . , D −
1); (σ) ≡ (

σ0 ≡ τ, σi
)

with i = 1, . . . , p; ∂a ≡ ∂
∂σa .

• u is auxiliary world-volume scalar field defining the lightlike direction
(see Eq.(6) below); the choice of the sign of ε in (1) does not have
physical effect because of the non-propagating nature of the u-field
(see Appendix).

• T is dynamical (variable) brane tension (also a non-propagating degree
of freedom, cf. Appendix).

The corresponding equations of motion w.r.t. Xµ, u and T read accordingly
(with Γµ

λν – Christoffel connection for the bulk metric):

∂a

(
T

√
|g̃|g̃ab∂bX

µ
)

+ T
√
|g̃|g̃ab∂aX

λ∂bX
νΓµ

λν = 0 , (3)

∂a

(
1
T

√
|g̃|g̃ab∂bu

)
= 0 , T 2 + εg̃ab∂au∂bu = 0 , (4)

where we have introduced the convenient notations:

g̃ab = gab − ε
1
T 2

∂au∂bu , g̃ ≡ det ‖g̃ab‖ , (5)

and g̃ab is the inverse matrix w.r.t. g̃ab.
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From the definition (5) and second Eq.(4) one easily finds that the induced
metric on the world-volume is singular on-shell:

gab

(
g̃bc∂cu

)
= 0 (6)

exhibiting the lightlike nature of the p-brane described by (1).
Similarly to the ordinary bosonic p-brane we can rewrite the Nambu-Goto-
type action for the LL-brane (1) in a Polyakov-like form by employing an
intrinsic Riemannian world-volume metric γab:

SLL−Pol = −1
2

∫
dp+1σ Tb

p−1
2

0

√−γ

[
γab

(
gab − ε

1
T 2

∂au∂bu

)
− εb0(p− 1)

]
,

(7)
where b0 is a positive constant. The world-volume action (7) produces the
same equations of motion (3)–(4) together with the relation:

γab =
ε

b0
g̃ab . (8)

In particular, relation (8) reveals the meaning of b0 as (inverse) proportion-
ality factor between the intrinsic world-volume metric and the “extended”
induced metric (5).
Remark. Let us note that consistency between the Lorentz nature of the
intrinsic world-volume metric γab and the Lorentz nature of the embedding
space-time metric Gµν , taking into account (8), requires to set ε = 1 in the
Polyakov-type action (7).
As shown in our previous papers [7, 8, 9], using the above world-volume
Lagrangian framework one can add in a natural way couplings of the LL-
brane to bulk space-time Maxwell Aµ and Kalb-Ramond Aµ1...µD−1 gauge
fields (the latter – in the case of codimension one LL-branes, i.e., for D =
(p + 1) + 1). For the Nambu-Goto-type action (1) these couplings read
(second ref.[19]):

S̃LL[q, β] = −
∫

dp+1σ T

√∣∣∣∣ det ‖gab − 1
T 2

(∂au + qAa)(∂bu + qAb)‖
∣∣∣∣

− β

(p + 1)!

∫
dp+1σ εa1...ap+1∂a1X

µ1 . . . ∂ap+1X
µp+1Aµ1...µp+1 (9)

with gab denoting the induced metric on the world-volume (2) and Aa ≡
∂aX

µAµ. Using the short-hand notation generalizing (5):

ḡab ≡ gab − ε
1
T 2

(∂au + qAa)(∂bu + qAb) , Aa ≡ ∂aX
µAµ , (10)
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the equations of motion w.r.t. Xµ, u and T acquire the form:

∂a

(
T

√
|ḡ|ḡab∂bX

µ
)

+ T
√
|ḡ|ḡab∂aX

λ∂bX
νΓµ

λν

+ ε
q

T

√
|ḡ|ḡab∂aX

ν(∂bu + qAb)FλνGµλ

− β

(p + 1)!
εa1...ap+1∂a1X

µ1 . . . ∂ap+1X
µp+1Fλµ1...µp+1G

λµ = 0 , (11)

with

Fµν = ∂µAν − ∂νAµ , Fµ1...µD = D∂[µ1
Aµ2...µD] = F

√
−Gεµ1...µD (12)

being the field-strengths of the electromagnetic Aµ and Kalb-Ramond
Aµ1...µD−1 gauge potentials [20], and

∂a

(
1
T

√
|ḡ|ḡab(∂bu + qAb)

)
= 0 , T 2 + εḡab(∂au + qAa)(∂bu + qAb) = 0 .

(13)

The on-shell singularity of the induced metric gab (2), i.e., the lightlike
property, now reads (using notation (10), cf. Eq.(6)):

gab

(
ḡbc(∂cu + qAc)

)
= 0 . (14)

The Polyakov-type form of the world-volume action (9) becomes (using
short-hand notation (10)):

S̃LL−Pol[q, β] = −1
2

∫
dp+1σ Tb

p−1
2

0

√−γ
[
γabḡab − εb0(p− 1)

]

− β

(p + 1)!

∫
dp+1σ εa1...ap+1∂a1X

µ1 . . . ∂ap+1X
µp+1Aµ1...µp+1 , (15)

yielding the same set of equations of motion (11)–(13) plus the counterpart
of (8):

γab =
ε

b0
ḡab (16)

with ḡab as in (10). Here again the above remark after Eq.(8) applies, i.e.,
that for consistency we must set ε = 1 within the Polyakov-type action
(15).

3. Bulk Gravity/Gauge-Field System Self-Consistently In-
teracting With Lightlike Branes

3.1. Lagrangian Formulation
Let us now consider self-consistent bulk Einstein-Maxwell-Kalb-Ramond
system coupled to N ≥ 1 distantly separated charged codimension-one
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lightlike p-branes (in this case D = (p + 1) + 1). The pertinent Lagrangian
action reads:

S =
∫

dDx
√
−G

[
R(G)
16π

− 1
4
FµνFµν − 1

D!2
Fµ1...µDFµ1...µD

]

+
N∑

k=1

S̃LL[q(k), β(k)] , (17)

where again Fµν and Fµ1...µD are the Maxwell and Kalb-Ramond field-
strengths (12) and S̃LL[q(k), β(k)] indicates the world-volume action of the
k-th LL-brane of the form (9) (or (15)).
The corresponding equations of motion are as follows:

(a) Einstein equations:

Rµν − 1
2
GµνR = 8π

(
T (EM)

µν + T (KR)
µν +

N∑

k=1

T (brane−k)
µν

)
. (18)

The energy-momentum tensors of bulk gauge fields are given by:

T (EM)
µν = FµκFµν −Gµν

1
4
FκλFκλ , T (KR)

µν = −1
2
F2Gµν , (19)

where the last relation indicates that Λ ≡ 4πF2 can be interpreted as
dynamically generated cosmological “constant”. The energy-momentum
(stress-energy) tensor of k-th LL-brane is straightforwardly derived from
the pertinent LL-brane action (9):

Tµν
(brane−k) = −

∫
dp+1σ

δ(D)
(
x−X(k)(σ)

)
√−G

T (k)
√
|ḡ(k)|ḡab

(k)∂aX
µ
(k)∂bX

ν
(k) ,

(20)
where for each k-th LL-brane:

ḡ
(k)
ab ≡ g

(k)
ab − ε(k) 1

T 2
(k)

(∂au
(k) + q(k)A(k)

a )(∂bu
(k) + q(k)A(k)

b )

g
(k)
ab = ∂aX

µ
(k)Gµν∂bX

ν
(k) , ε(k) = ±1 , A(k)

a ≡ ∂aX
µ
(k)Aµ . (21)

(b) Maxwell equations:

∂ν

(√
−GFµν

)
−

N∑

k=1

q(k)

∫
dp+1σ δ(D)

(
x−X(k)(σ)

)

×
√
|ḡ(k)|ḡab

(k)∂aX
µ
(k)

∂bu
(k) + q(k)A(k)

b

T (k)
= 0 , (22)



Space-Time Compactification, Non-Singular Black Holes, ... 223

using notations (21).

(c) Kalb-Ramond equations of motion (recall definition of F in (12)):

ενµ1...µp+1∂νF −
N∑

k=1

β(k)

∫
dp+1σ δ(D)(x−X(k)(σ))

×εa1...ap+1∂a1X
µ1

(k) . . . ∂ap+1X
µp+1

(k) = 0 . (23)

(d) The LL-brane equations of motion have already been written down in
(11)–(13) above.

3.2. LL-Brane Dynamics in Static “Spherically Symmetric” Back-
grounds

We will be interested in static “spherically-symmetric”-type solutions of
Einstein-Maxwell-Kalb-Ramond equations with the following generic form
of the bulk Riemannian metric:

ds2 = −A(η)dt2 +
dη2

A(η)
+ C(η)hij(θ)dθidθj , (24)

or, in Eddington-Finkelstein coordinates (dt = dv − dη
A(η)) :

ds2 = −A(η)dv2 + 2dv dη + C(η)hij(θ)dθidθj . (25)

Here hij indicates the standard metric on p-dimensional sphere, cylinder,
torus or flat Euclidean section. The “radial-like” coordinate η will vary in
general from −∞ to +∞.
We will consider the simplest ansatz for the LL-brane embedding coordi-
nates:

X0 ≡ v = τ , X1 ≡ η = η(τ) , Xi ≡ θi = σi (i = 1, . . . , p) . (26)

Furthermore, we will use explicit world-volume reparametrization invari-
ance of the LL-brane actions ((7) and (15)) to introduce the standard syn-
chronous gauge-fixing conditions for the intrinsic world-volume metric:

γ00 = −1 , γ0i = 0 (i = 1, . . . , p) . (27)

The latter together with second Eq.(13) and (16) (and accounting for the
definition (10)) implies for the 00-component of the induced metric (2) on
the LL-brane world-volume:

g00 ≡
.

X
µ
Gµν

.
X

ν
=

b0

T 2
ḡij (∂iu +Ai) (∂ju +Aj) ≥ 0 (28)
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which must match the condition g00 ≤ 0 required by consistency between
the Lorentz form of the bulk space-time metric and the Lorentz form of the
LL-brane world-volume metric. Hence we are led to impose the ansatz:

∂iu +Ai = 0 (29)

which is consistent for static spherically symmetric bulk space-time Maxwell
field Aµ and whose physical meaning is that the lightlike direction for the
induced metric in Eq.(14) (or Eq.(6) for electrically neutral LL-brane) co-
incides with the brane proper-time τ -direction on the world-volume.
Thus, taking into account (27) and (29), the LL-brane equations of motion
(13) (or, equivalently, (14)) reduce to:

g00 ≡
.

X
µ
Gµν

.
X

ν
= 0 , g0i ≡

.
X

µ
Gµν∂iX

ν = 0 , (30)

T 2 =
1
b0

(∂0u +A0)
2 , ∂iT = 0 , ∂0g

(p) = 0
(
g(p) ≡ det ‖gij‖

)
, (31)

with gij being the spacelike part of the induced metric (2). Eqs.(30)–(31)
with LL-brane embedding (26) and metric of the form (25) imply:

−A(η) + 2
.
η= 0 , ∂τC =

.
η ∂ηC |η=η(τ)= 0 . (32)

Here we will distinguish two cases. First, let us consider the case of C(η)
as non-trivial function of η (i.e., proper spherically-symmetric-type space-
time). In this case Eqs.(32) imply:

.
η= 0 → η(τ) = η0 = const , A(η0) = 0 . (33)

Eq.(33) tells us that consistency of LL-brane dynamics in a proper spherically-
symmetric-type gravitational background of codimension one requires the
latter to possess a horizon (at some η = η0), which is automatically occu-
pied by the LL-brane (“horizon straddling” according to the terminology
of Ref.[4]). Similar property – “horizon straddling”, has been found also for
LL-branes moving in rotating axially symmetric (Kerr or Kerr-Newman)
and rotating cylindrically symmetric black hole backgrounds [9, 10].
Next, consider the case C(η) = const in (25), i.e., the corresponding space-
time manifold is of product type Σ2×Sp. A physically relevant example is
the Bertotti-Robinson [21, 22] space-time in D = 4 (i.e., p = 2) describing
Anti-de-Sitter2 × S2 with metric (in Eddington-Finkelstein coordinates):

ds2 = −η2

r2
0

dv2 + 2dvdη + r2
0

[
dθ2 + sin2 θdϕ2

]
. (34)

At η = 0 the Bertotti-Robinson metric (34) possesses a horizon. Further,
we will consider the case of Bertotti-Robinson universe with constant elec-
tric field Fvη = ± 1

2r0
√

π
. In the present case the second Eq.(32) is trivially
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satisfied whereas the first one yields: η(τ) = η(0)
(
1−τ η(0)

2r2
0

)−1
. In particu-

lar, if the LL-brane is initially (at τ = 0) located on the Bertotti-Robinson
horizon η = 0, it will stay there permanently. It is this particular solution
which we will consider in what follows.

4. Self-Consistent Wormhole-Like Solutions with LL-Branes
– General Scheme

We will construct self-consistent static “spherically symmetric” solutions
of the system of Einstein-Maxwell-Kalb-Ramond equations (18)–(23) and
LL-brane Eqs.(11)–(13) following the steps:

(i) The bulk space-time metric will be of the form:

ds2 = −A(η)dv2 + 2dv dη + C(η)hij(θ)dθidθj ,

A(η(k)
0 ) = 0 (k = 1, . . . , N) , A(η) > 0 for all η 6= η

(k)
0 (35)

Each horizon at η = η
(k)
0 is automatically occupied by (one of the) LL-

brane(s) according to the LL-brane dynamics (“horizon straddling”, cf.(32)–
(33)).

(ii) Choose “vacuum” solutions of Einstein-Maxwell-Kalb-Ramond equa-
tions (18)–(23) (i.e., without the delta-function terms due to the LL-branes)
in each region −∞ < η < η

(1)
0 , η

(1)
0 < η < η

(2)
0 , . . . , η

(N)
0 < η < ∞.

(iii) Match the discontinuities across each horizon at η = η
(k)
0 of the deriva-

tives of the bulk metric, Maxwell and Kalb-Ramond field strengths us-
ing the explicit expressions for the LL-brane stress-energy tensors, electric
and Kalb-Ramond currents systematically derived from the underlying LL-
brane world-volume actions (15).
In particular, for the stress-energy tensor of each k-th LL-brane we obtain
(here we suppress the index (k)):

Tµν
(brane) = Sµν δ(η − η0) (36)

with surface energy-momentum tensor:

Sµν ≡ T

εb
1/2
0

(
∂τX

µ∂τX
ν − εb0G

ij∂iX
µ∂jX

ν
)
v=τ, η=η0, θi=σi , (37)

where Gij = C(η)hij(θ) (cf. (25)). For the non-zero components of (37)
(with lower indices) and its trace we find:

Sηη = ε
T

b
1/2
0

, Sij = −Tb
1/2
0 Gij , Sλ

λ = −pTb
1/2
0 . (38)
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Taking into account (36)–(38) Einstein equations (18) yield:

[∂ηA]
η
(k)
0

= −16πT (k)

√
b
(k)
0 , [∂η lnC]

η
(k)
0

= − 16π

p

√
b
(k)
0

T (k) (39)

with notation [Y ]η0
≡ Y |η→η0+0 −Y |η→η0−0 for any quantity Y .

Maxwell and Kalb-Ramond equations yield:

[Fvη]η(k)
0

= q(k) , [F ]
η
(k)
0

= −β(k) (40)

In Eqs.(39)–(40)
(
T (k), b

(k)
0

)
indicate the dynamical tension and b0 pa-

rameter of the k-th LL-brane occupying horizon η
(k)
0 , with electric charge

surface density q(k) and Kalb-Ramond coupling β(k). The second relation
in (40) gives the jump of the dynamically generated cosmological constant
Λ ≡ 4πF2 across the k-th LL-brane.
The only non-trivial contribution of LL-brane equations of motion comes
from the X0-equation which yields:

∂0T
(k) + T (k) 1

2

(
〈∂ηA〉η(k)

0

+ pb
(k)
0 〈∂η ln C〉

η
(k)
0

)

−
√

b
(k)
0

(
q(k) 〈Fvη〉η(k)

0

− β(k) 〈F〉
η=

(k)
0

)
= 0 (41)

with notation 〈Y 〉η0
≡ 1

2

(
Y |η→η0+0 +Y |η→η0−0

)
.

In what follows we will take time-independent dynamical LL-brane ten-
sion(s) (∂0T

(k) = 0) because of matching static bulk space-time geometries.
Let us also note that the appearance of mean values of the corresponding
quantities with discontinuities across the horizons follows the resolution of
the discontinuity problem given in [3] (see also [23]).
The wormhole-like solutions presented in the next Section share the follow-
ing important properties:
(a) The LL-branes at the wormhole “throats” represent “exotic” matter –
T ≤ 0, i.e., negative or zero brane tension implying violation of null-energy
conditions as predicted by general wormhole arguments [16] (although the
latter could be remedied via quantum fluctuations).
(b) The wormhole-like space-times constructed via LL-branes at their “throats”
are not traversable w.r.t. the “laboratory” time of a static observer in either
of the different “universes” comprising the pertinent wormhole space-time
manifold. On the other hand, they are traversable w.r.t. the proper time
of a traveling observer.
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Proper-time traversability can be easily seen by considering dynamics of
test particle of mass m0 (“traveling observer”) in a wormhole background,
which is described by the world-line action:

Sparticle =
1
2

∫
dλ

[1
e

.
x

µ .
x

ν
Gµν − em2

0] . (42)

Using energy E and orbital momentum J conservation and introducing
the proper world-line time s ( ds

dλ = em0), the “mass-shell” equation (the
equation w.r.t. the “einbein” e produced by the action (42)) yields:

(
dη

ds

)2

+ Veff(η) =
E2

m2
0

, Veff(η) ≡ A(η)
(
1 +

J 2

m2
0C(η)

)
(43)

where the metric coefficients A(η), C(η) are those in (35). Irrespectively
of the specific form of the “effective potential” in (43), a “radially” moving
(with zero “impact” parameter J = 0) traveling observer (and with suffi-
ciently large energy E) will always cross within finite amount of proper-time
through any “throat” (η = η

(k)
0 ) from one “universe” to another and possi-

bly even shuttle between them (cf. Subsection 5.4 below).

5. Examples

Henceforth we will use the following acronyms for brevity: “BR”=“Bertotti-
Robinson”, “Schw”=“Schwarzschild”, “RN”= “Reissner-Nordström”,
“(A)dS”=“(Anti-)de-Sitter”, “SdS” = “Schwarzschild-de-Sitter”, and LL-
brane matching will be denoted by “|”.

5.1. Symmetric Wormhole with Reissner-Nordström Geometry
It consists of two identical copies of exterior RN region (r > r0, r0 denoting
the outer RN horizon) – “left” RN “universe” (η < 0) and “right” RN
“universe” (η > 0) glued together via a LL-brane sitting on r = r0 (η = 0):

ds2 = −A(η)dv2 + 2dv dη + C(η)
[
dθ2 + sin2 θ dϕ2

]
, (44)

A(η) = 1− 2m

r0 + |η| +
Q2

(r0 + |η|)2 , C(η) = (r0 + |η|)2 , (45)

A(0) = 0 , A(η) > 0 for η 6= 0 . (46)

RN mass is determined by the dynamical LL-brane tension T :

(16π |T |
√

b0 m− 1)
(
m2 −Q2

)
+ 16π2T 2b0Q

4 = 0 . (47)

In the particular case of Schwarzschild wormhole (Einstein-Rosen “bridge”,
Q = 0): m = 1/8π|T |.
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5.2. Non-singular Black Hole
It is described by the metric:

ds2 = −A(r)dv2 + 2dv dr + r2
[
dθ2 + sin2 θ dϕ2

]
; (48)

A(r) ≡ A(−)(r) = 1−Kr2 , for r < r0 (de Sitter) , (49)

A(r) ≡ A(+)(r) = 1− 2m

r
+

Q2

r2
, for r > r0 (RN) , (50)

where r0 is the common horizon A(±)(r0) = 0 , r0 = m −
√

m2 −Q2

(internal RN).
An electrically charged LL-brane occupies the horizon r = r0 and uniquely
determines all parameters r0 = 1√

K
, m = 2√

K
, Q2 = 3

K , with Λ = 3K =
4π
3 β2 – dynamically generated cosmological const in the interior de-Sitter

region through the Kalb-Ramond LL-charge β. Apparently there is no
black hole singularity at r = 0.

5.3. Asymmetric Wormhole – Schw-dS | RN

The overall metric is ds2 = −A(η)dv2+2dv dη+(r0+|η|)2 [
dθ2 + sin2 θ dϕ2

]
with A(0) = 0. Here we have:
(i) “left universe” – exterior region of Schwarzschild-de-Sitter space-time
above the inner (Schwarzschild-type) horizon r0:

A(η) = 1− 2m1

r0 − η
−K(r0 − η)2 for η < 0 ; (51)

(ii) “right universe” – exterior Reissner-Nordström region beyond the outer
RN horizon r0:

A(η) = 1− 2m2

r0 + η
+

Q2

(r0 + η)2
for η > 0 . (52)

Charged LL-brane occupies the common horizon (wormhole “throat”) and
determines all wormhole parameters via its charges (q, β):

m1 =
√

b0

4π|T |
(
1− b0β

2

3πT 2

)
, m2 =

√
b0

4π|T |
(
1 +

4q2

πT 2

)
, (53)

r0 =
√

b0

2π|T | , T 2 =
β2 + 4q2

2π(1− 4b0)
, Q2 =

16π
b0

q2r4
0 . (54)

including the dynamically generated cosmological const Λ = 3K = 4πβ2 in
the “left” universe.
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5.4. Compactification/Decompactification Transitions
These are wormhole-like solution with two widely separated LL-branes sit-
ting at horizons η = η0 ≡ 0 and η = η̄0, with metric:

ds2 = −A(η)dv2 + 2dvdη + C(η)
[
dθ2 + sin2 θdϕ2

]
, (55)

A(0) = 0 , A(η̄0) = 0 , η̄0 ≡ r̄0 − r0 > 0 , A(η) > 0 for η 6= 0, η̄0 , (56)

describing three pairwise matched space-time regions:

(i) “left” Bertotti-Robinson “universe” (AdS2 × S2) for η < 0 where:

A(η) =
η2

r2
0

, C(η) = r2
0 , Fvη = ± 1

2
√

π r0
; (57)

(ii) “middle” Reissner-Nordström-de-Sitter “universe” for
0 < η < r̄0 − r0 with:

A(η) = 1− 2m

r0 + η
+

Q2

(r0 + η)2
− 4πβ2

3
(r0 + η)2 , (58)

C(η) = (r0 + η)2 , Fvη =
Q√

4π(r0 + η)2
, (59)

where r0 and r̄0 (r̄0 > r0) are the intermediate (outer RN) and the out-
most (de-Sitter) horizons of the standard RN-de-Sitter space-time (note the
dynamically generated cosmological const Λ = 4πβ2 in (58));

(iii) another “right” Bertotti-Robinson “universe” (AdS2 × S2) for η >
r̄0 − r0:

A(η) =
(η − r̄0 + r0)

2

r̄2
0

, C(η) = r̄2
0 , Fvη = ± 1

2
√

π r̄0
. (60)

Traveling observer along η-direction will “shuttle” between the three “uni-
verses” crossing consecutively both LL-branes at the “throats” within finite
intervals of his/her proper time.

5.5. Multi-“throat” wormhole Schw | SdS | SdS | Schw
This is a wormhole-like solution with metric:

ds2 = −A(η)dv2 + 2dvdη + (r0 + η)2
[
dθ2 + sin2 θdϕ2

]

A(0) = 0 , A(±(r̄0 − r0)) = 0

describing four pairwise matched space-time regions via 3 widely separated
LL-branes located at η = 0 and η = ±(r̄0 − r0):



230 E. Guendelman, A. Kaganovich, E. Nissimov, S. Pacheva

(i) “left-most” (η < −(r̄0− r0)) and “right-most” (η > r̄0− r0) “universes”
comprising the exterior Schwarzschild region beyond the Schwarzschild
horizon at r̄0:

A(η) = 1− r̄0

r0 + |η| for |η| > r̄0 − r0 , (61)

(ii) two “middle” “universes”, for −(r̄0−r0) < η < 0 and for 0 < η < r̄0−r0
– two identical copies of the intermediate region of Schwarzschild-de-Sitter
space-time between the inner (Schwarzschild) horizon at r0 and the outer
(de-Sitter) horizon at r̄0:

A(η) = 1− 2m

r0 + |η| −
4πβ2

3
(r0 + |η|)2 for |η| < r̄0 − r0 , (62)

where A(0) = 0 (inner SdS horizon) and A(±(r̄0 − r0)) = 0 (outer SdS
horizon) and with dynamically generated (by the LL-branes) cosmological
const Λ = 4πβ2.

5.6. Lightlike Braneworld
This is a solution with a bulk D=5 space-time consisting of two identical
copies of the exterior region of D=5 AdS-Schwarzschild black hole beyond
the horizon r0 (“left” universe for η < 0 and “right” universe for η > 0)
glued together by a lightlike 3-brane with flat 4-dim world-volume located
at the horizon (η = 0):

ds2 = −A(η)dv2 + 2dv dη + K(r0 + |η|)2d~x2 , (63)

A(η) = K(r0 + |η|)2 − m

(r0 + |η|)2 (64)

with A(0) = 0 and A(η) > 0 for η 6= 0, where Λ = −6K is the bare D =5
cosmological constant.
The bulk space-time parameters (K, m) are related to the LL-brane param-
eters (T, b0) as: T 2 = 3K/8π2 and b0 = 2

3

√
Km.

Because of the shape of the “effective potential” A(η) (64) a traveling
observer along the extra 5-th dimension will “shuttle” between the two
“universes” crossing in either direction the D =4 braneworld within finite
intervals of his/her proper time.

6. Conclusions

To conclude let us recapitulate the crucial properties of the dynamics of
LL-branes interacting with gravity and bulk space-time gauge fields:
(i) “Horizon straddling” – automatic positioning of LL-branes on (one of)
the horizon(s) of the bulk space-time geometry.
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(ii) Intrinsic nature of the LL-brane tension as an additional degree of free-
dom unlike the case of standard Nambu-Goto p-branes (where it is a given
ad hoc constant), and which might in particular acquire zero or negative
values.
(iii) The stress-energy tensors of the LL-branes are systematically derived
from the underlying LL-brane world-volume Lagrangian actions and pro-
vide the appropriate source terms on the r.h.s. of Einstein equations to
enable the existence of consistent non-trivial wormhole-like solutions.
(iv) LL-branes naturally couple to Kalb-Ramond bulk space-time gauge
fields which results in dynamical generation of space-time varying cosmo-
logical constant. In particular, the latter is responsible for creation of a
non-singular black hole with de Sitter interior region below the horizon.
(v) The above properties of LL-branes trigger spontaneous compactifica-
tion/decompactification transitions in the bulk space-time manifold.
Further explicit solutions describing multi-“throat” wormhole-like space-
times of the form “BR | SdS | SdS | BR”, “BR | SdS | Schw”, “Cyclic” SdS,
as well as “flat Minkowski | AdS-RN” will appear in a subsequent paper.

Appendix

Let us consider for simplicity the LL-brane Polyakov-type action (7) for p = 0,
i.e., the case of lightlike (LL-) particle:

SLL−particle =
1
2

∫
dτTb

− 1
2

0

[
1
e

( .

X
2 −ε

.
u

2

T 2

)
− εb0e

]
, (65)

where
.

X
2≡ .

X
µ
Gµν

.

X
ν

and e is the einbein (γ00 = −e2 ,
√−γ = e). We will

show that the LL-particle (65) is dynamically equivalent to the standard massless
particle described by the action (42) with m0 = 0.

Indeed, the action (65) produces the following equations of motion w.r.t. e, T , u
and Xµ:

.

X
2

+ε
(
b0e

2 −
.
u

2

T 2

)
= 0 ,

.

X
2 −ε

(
b0e

2 −
.
u

2

T 2

)
= 0 , (66)

∂τ

( .
u

eT

)
= 0 , ∂τ

(T

e

.

X
µ
)

+
T

e

.

X
ν .

X
λ

Γµ
νλ = 0 . (67)

Eqs.(66) imply
.

X
2
= 0 and e2b0 =

.
u

2
/T 2, where the first expression is the standard

massless constraint following from the standard action (42) (with m0 = 0) upon
varying w.r.t. e, whereas the second relation makes the first Eq.(67) an identity.
The last Eq.(67) is obviously equivalent to the standard geodesic equation up to
a world-line τ -reparametrization.

Within the canonical Hamiltonian approach, introducing the canonical momenta
(using the short-hand notation ẽ ≡ eb

1/2
0 ) Pµ = T

ẽ Gµν

.

X
ν

and pu ≡ − ε
ẽT

.
u we

obtain the canonical Hamiltonian:

Hc =
ẽ

2T
P 2 − ε

ẽT

2
(
p2

u − 1
)

, P 2 ≡ PµGµνPν . (68)
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Preservation of the primary constraints pe = 0 and pT = 0 (vanishing canonical
momenta of e and T ) by (68) yields the secondary first-class constraints:

P 2 = 0 , p2
u − 1 = 0 . (69)

Thus, we deduce that e, T, u are non-propagating “pure-gauge” degrees of freedom
and we are left with the first relation (69) which is the standard canonical mass-
less constraint resulting from the standard action (42) (with m0 = 0) within the
Hamiltonian formalism.
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